In vitro duplication and in vivo cure of mast-cell deficiency of Sl/Sld mutant mice by cloned 3T3 fibroblasts.

نویسندگان

  • J Fujita
  • H Onoue
  • Y Ebi
  • H Nakayama
  • Y Kanakura
چکیده

Sl/Sld mutant mice are profoundly deficient in tissue mast cells as a result of a defect in the microenvironment promoting the development of these cells. To facilitate the analysis of the Sl mutation, we attempted to establish an in vitro system in which the in vivo defect of Sl/Sld mice could be reproduced. 3T3 cell lines were established from 17-day-old embryos of Sl/Sld and congenic +/+ genotypes and were cocultured with mast cells obtained in vitro from the bone marrow of +/+ mice. All eight 3T3 cell lines derived from +/+ of T-cell-derived growth factors. By contrast, none of eight 3T3 cell lines from Sl/Sld embryos supported mast cells under similar conditions. The defect in Sl/Sld 3T3 cells was further characterized as a failure to induce the G1-to-S transition in synchronized mast cells upon contact, suggesting that the Sl gene product is indispensable for this activity. When 3T3 cells of +/+ genotype, grown on pieces of cellulose acetate membrane, were transplanted into the peritoneal cavity of Sl/Sld mice, mast cells appeared locally in the transplanted 3T3 cell layers. These results suggested an essential role of fibroblasts in vivo as the tissue microenvironment promoting the development of mast cells and that they are defective in Sl/Sld mice. The present coculture system duplicated mast-cell deficiency of Sl/Sld mice in vitro and should prove useful for analysis of the Sl gene product.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Validated Embryionic Stem Cell Test to Predict Embryotoxicityinvitro

Backgrounds: A straight-forward way to identify whether a drug or environmental chemical can be harmful to unborn baby is to evaluate its effect on laboratory animals. All invivo methods need large number of animal and are therefore time consuming and expensive. However, the thousands of chemicals in need of testing, to reduce the spending of live animals, an assortment of in vitro assays has ...

متن کامل

Development of large numbers of mast cells at sites of idiopathic chronic dermatitis in genetically mast cell-deficient WBB6F1-W/Wv mice.

The normal skin and other tissues of adult mast cell-deficient WBB6F1-W/Wv or WCB6F1-Sl/Sld mice contain less than 1.0% the number of mast cells present in the corresponding tissues of the congenic normal (+/+) mice. As a result, genetically mast cell-deficient WBB6F1-W/Wv or WCB6F1-Sl/Sld mice are widely used for studies of mast cell differentiation and function. We found that mast cells devel...

متن کامل

Hemonectin mediates adhesion of engrafted murine progenitors to a clonal bone marrow stromal cell line from Sl/Sld mice.

Mutant Sl/Sld mice exhibit decreased marrow hematopoiesis. The defect is known to reside in the marrow microenvironment of these animals, which is reproduced in vitro by primary marrow explants as well as by cloned marrow stromal cell lines. Bone marrow progenitor cells are incapable of adhering to primary Sl/Sld stromal cells or cloned stromal cell lines derived from them to form cobblestone-i...

متن کامل

Mouse bone marrow-derived mast cells (mBMMC) obtained in vitro from mice that are mast cell-deficient in vivo express the same panel of granule proteases as mBMMC and serosal mast cells from their normal littermates

The ear, skin, and purified serosal mast cells of WBB6F1/J-(+/+) (WB-(+/+)) and WCB6F1/J-(+/+) (WC-(+/+)) mice contain high steady-state levels of the transcripts that encode mouse mast cell protease (mMCP) 2, mMCP-4, mMCP-5, mMCP-6, and mouse mast cell carboxypeptidase A (mMC-CPA). In contrast, no mast cell protease transcripts are present in abundance in the ear and skin of WBB6F1/J-W/Wv (W/W...

متن کامل

Mechanism of mast cell deficiency in mutant mice of mi/mi genotype: an analysis by co-culture of mast cells and fibroblasts.

Mutant mice of mi/mi genotype are osteopetrotic and are deficient in mast cells. The osteopetrosis of mi/mi mice can be cured by bone marrow transplantation from congenic normal (+/+) mice, and therefore, the cause of the osteopetrosis is attributed to a defect of osteoclasts. Since both osteoclasts and mast cells are the progeny of multipotential hematopoietic stem cells, we examined whether m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 86 8  شماره 

صفحات  -

تاریخ انتشار 1989